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rapidly when a 500-W incandescent lamp without 
filters was employed as a light source. It is believed 
that the process using fined application in photography 

Adetailed understanding of the dynamics and stereo­
chemistry of organic reactions requires, above all, 

a knowledge of the many-dimensional potential energy 
surface. The very dimensionality of this surface, how­
ever, precludes its evaluation for all but the simplest 
systems. The theoretical study of a reaction involving 
only four atoms, for example, would require a million 
evaluations of the potential energy function if only ten 
grid points for each degree of freedom are chosen. To 
reduce this problem to one of a tractable size, two gen­
eral approaches have been employed. The first type of 
approach seeks to reduce the dimensionality of the sur­
face by eliminating certain degrees of freedom. In 
many cases, for example, the length of carbon-hydro­
gen bonds can be assumed to remain relatively un­
changed throughout the course of the reaction. Thus, 
the degrees of freedom corresponding to these C-H 
bond lengths can be eliminated from consideration. 
However, for most organic reactions, it is unlikely that 
the dimensionality can be sufficiently reduced to a man­
ageable number of degrees of freedom without placing 
unrealistically severe constraints on the system. A 
related technique involves choosing one or two degrees 
of freedom as independent variables of the potential 
energy and to allow the system to relax by optimizing 
the remaining degrees of freedom for each value of the 
independent variables. This type of approach, how­
ever, is computationally expensive, and the resulting 
surface may very well fail to include the transition state. 
The second type of general approach involves consider­
ation of all the degrees of freedom of the system but 
seeks only to locate certain chemically interesting points 
on the potential energy surface. For a one-step reac­
tion, these points would be the local minima corre­
sponding to the equilibrium geometries of reactants and 
products and a col or saddle point which separates 
these local minima. The lowest energy saddle point 

will be useful and further examination along this line 
(including the preparation of the photosensitive plates) 
is in progress. 

lying between two such local minima corresponds to 
the transition state or activated complex for the reac­
tion. The calculation of equilibrium geometries is a 
relatively straightforward process. It involves only the 
minimization of the potential energy function with re­
spect to the degrees of freedom of the molecule. Ge­
ometries of even moderately large organic molecules 
can be calculated relatively economically when semi-
empirical molecular orbital methods are used.1 Cer­
tain types of transition states can also be located using 
energy-minimization techniques. In reactions for 
which the reactants and products are identical in struc­
ture, intermediate configurations can generally be found 
which are of a different symmetry. Minimizing the 
energy within this symmetry will lead to a stationary 
point which may be a transition state for the reaction. 
Well-known examples of this are the internal rotations 
of ethane and ethylene about the C-C bonds and the 
umbrella inversion of ammonia. Another example is 
that of the Cope rearrangement, which has been re­
cently studied by Dewar and coworkers.2 In the gen­
eral case, however, transition states cannot be deter­
mined by minimizing the energy within a given sym­
metry so that alternative methods of seeking these 
points must be devised. 

The purpose of this article is to describe a valid com­
putational method of locating transition states on the 
potential energy surface and to apply the method to a 
simple organic reaction: the isomerization of cyclo-
butene to butadiene. The semiempirical MINDO/2 
molecular orbital method3 was used for this particular 
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example. In the following section we review the char­
acteristics of a transition state and describe the method 
used to locate and identify it. The formal mathematical 
and computational aspects are given in the appendices. 

The Location and Identification of Transition States 

The notation used in this article is as follows: E(qu 

92, • • •, ?3.v) represents the potential energy function as 
being dependent upon the 3A" Cartesian coordinates 
qt of the N atoms of the system. It is convenient to 
refer to these coordinates as components of the column 
vector q. The gradient of the potential energy function 
is denoted by g, also a column vector. Its components 
are the partial derivatives of E with respect to each of 
the coordinates 

gt = HE(q)/dqt / = 1,2, ...,3A^ (1) 

The matrix of second partial derivatives of the potential 
energy (the force constant matrix) is denoted by A 

A17 = V-E(<n)lbqjbq, (2) 

We require that a point q'r which is a transition state 
for a reaction meet the following criteria. 

(1) qT must be a stationary point. That is, the gra­
dient of E evaluated at q1 must be null 

g(qT) = 0 

This condition guarantees the topological invariance of 
transition states in the sense that the above equation 
holds regardless of the coordinate system used.4 

(2) The force constant matrix A1 at the transition 
state must have one and only one negative eigenvalue. 
The eigenvalues of AT measure the curvature of the 
potential energy surface along each of the principal 
directions corresponding to the eigenvectors of AT. 
The requirement that A1 have a negative eigenvalue is 
necessary to characterize qT as a saddle point. A local 
minimum in the region of the transition state would 
have no negative eigenvalue of the force constant ma­
trix and might be labeled a "stable" or "long-lived" 
intermediate. If there is more than one negative eigen­
value, then it can be shown that a lower energy saddle 
point exists for which AT does have only one negative 
eigenvalue.4 

(3) qT must be the highest energy point on a continu­
ous line connecting reactants and products. This con­
dition is only intended as a device for identifying the 
reactants and products that are associated with the 
transition state qT. In a single-step reaction, the line 
should be such that the energy along this line decreases 
monotonically from the transition state value to that of 
the reactants (or products). In a multistep reaction, 
the condition serves to identify qT as the saddle point of 
highest energy. The line can, in principal, be con­
structed in any manner consistent with this condition, 
so that the line itself is rather arbitrary. In no way 
should it be interpreted as indicating the stereochem­
ical course of the reaction, which can only be decided 
from dynamical considerations (although we do, of 
course, assume that various reactive trajectories will 
generally pass near the saddle point). A simple method 
of constructing the line would be to vary the coordinates 
linearly between their reactant (or product) values and 

(4) J. N. Murrell and K. J. Laidler, Trans. Faraday Soc, 64, 371 
(1968). 

their values at the transition state, and to test the con­
dition by calculating the energy at a number of points 
along the line. This procedure, however, may not sat­
isfy the condition, and could involve a number of trials, 
since different choices of a coordinate system would re­
sult in different lines. An alternative method might be 
to use the relaxation technique of Empedocles.5 This 
method, when used in conjunction with variational 
wave functions, can give both an analytical expression 
for the line and the energy at any point on the line, fea­
tures which could be very useful in connection with dy­
namical studies. For the present purpose of identify­
ing reactants and products, however, we have found it 
convenient to simply minimize the energy using qT as a 
starting point, the line being given by the points gener­
ated by the minimization. At the saddle point itself, 
the line must have a nonzero component along the di­
rection of least (most negative) curvature. This direc­
tion, which is given as the eigenvector corresponding to 
the negative eigenvalue of AT, can be used to initiate the 
energy minimization: a step along this direction in 
one sense will lead to reactants, while a step in the op­
posite sense will lead to products. If the minimization 
does not converge on the reactants and/or products of 
interest, then the possibility of the reaction being multi-
step arises, and further investigation of the intermediate 
steps will be necessary. 

(4) qT must be the lowest energy point which satisfies 
the above three conditions. This is, in principle, the 
most difficult requirement to satisfy since it requires 
locating all points which satisfy the first three condi­
tions. In practice it will be assumed that the lowest 
energy qT found which satisfies the first three conditions 
will also satisfy the fourth provided that chemical in­
tuition and such principles as the Woodward-Hoffmann 
rules6 are not seriously violated. 

The method we use to locate transition states simply 
involves finding points q which satisfy condition 1 and 
then to test them to see if they also satisfy conditions 2 
and 3. Figure 1 is a contour map of a hypothetical 
two-dimensional potential energy surface (generated, 
in this case, as the product of two ellipses). It might 
be taken to schematically represent the surface for 
isomerization of a linear triatomic molecule from A— 
B = C to A=B—C, where the two interatomic dis­
tances rAB and rBC are the horizontal and vertical co­
ordinates of the figure. The points marked R and P 
correspond to the reactants and products and the saddle 
point T represents the transition state. Figure 2 is a 
contour map of the Euclidian norm of the gradient of 
the potential function of Figure 1 

<Kq) = ZgAd) (3) 
i = i 

where the g4's are the components of the gradient 
(eq 1). Two important points to note about this func­
tion are that it is always positive except at stationary 
points of E, in which case it is zero, and that it is a sum 
of squares. Thus, the points R, P, and T of Figure 1 
are all local minima with a = 0 on the surface of Figure 
2. The importance of a being a sum of squares of 
functions which is zero at local minima corresponding 

(5) P. Empedocles, Int. J. Quantum Chem., 35,47 (1969). 
(6) R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed. 

Engl, 8, 781 (1969). 
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Figure 1. A hypothetical two-dimensional potential energy con­
tour surface illustrating reactants (R), transition state (T), and 
products (P) and a "path" obtained by optimizing # A B at each value 
of /?BC-

to stationary points of the potential energy is that the 
very powerful generalized least-squares methods can be 
used to locate these minima. The particular method 
we have used for this purpose is described in Appendix 
A. 

The problem of selecting a starting geometry for the 
minimization of cr to a transition state is somewhat 
more difficult than the analogous problem of selecting 
an initial geometry for the minimization of E to an 
equilibrium geometry. In the first place, the minimiza­
tion of the potential energy will always, by definition, 
lead to an equilibrium geometry, whereas the minimiza­
tion of a can lead to minima, maxima, or saddle points 
of E. Also, the a surface may have additional local 
minima at which cr is not zero. Since the number of 
minima of a is much larger than the number of minima 
of E, the valleys surrounding these minima will gen­
erally be smaller than the valleys surrounding the min­
ima of the E surface. The consequence of this is that 
for a poor choice of initial geometry, the minimization 
of a is less likely to lead to the correct local minimum 
than the minimization of E. Secondly, the rate of con­
vergence of the minimization method will depend 
rather strongly on how well the initial geometry ap­
proximates the true minimum. For equilibrium ge­
ometry calculations, an initial geometry can often be 
taken as the experimental geometry. If this is not 
known, a good educated guess of the geometry can 
usually be constructed from an understanding of the 
nature of chemical bonding. The geometries of transi­
tion states, on the other hand, have not been measured 
directly by experiment, and the inherently unstable na­
ture of the bonding of such species often renders 
guessing the structure difficult. In such situations the 
direct, but somewhat clumsy and unreliable, method de­
scribed below may yield a point in the vicinity of the 
transition state. 

Most reactions involve the breaking or stretching of 
at least one bond. It may be possible to "force" the 
reaction to proceed from reactants toward products by 
varying this bond in small increments from its reactant 
value to its product value and minimizing the energy 
with respect to the remaining degrees of freedom at 
each incremental value of the bond length. Alterna­
tively, a bond angle or dihedral angle can be used. 
The only nonzero contribution to the Euclidian norm 

Mclver, 

Figure 2. The contour surface obtained as the sum of the squares 
of the components of the gradient of the surface of Figure 1. 

of the gradient at each point obtained by this process 
will be due to those components of the gradient which 
correspond to the bond being stretched or angle being 
bent. If this procedure is to lead to a point in the vi­
cinity of the transition state, a will initially increase, 
then pass through a maximum, and finally begin to de­
crease as the saddle point is approached. The remain­
ing degrees of freedom which have been optimized 
should change smoothly from their reactant values to­
ward their product values. Once the maximum a is 
reached, the minimization of a should lead to the saddle 
point. This procedure is illustrated in Figures 1 and 2 
(which, of course, have been "rigged" for this purpose). 
The two paths indicated by the solid heavy lines are de­
fined by the locus of points obtained by decreasing 
rBC in small increments from the point R (the reactant) 
and optimizing rAB at each increment of rBC. (The 
same paths are obtained by increasing rBC from the 
products region.) It is worth pointing out that in this 
case there is a substantial gap between the two paths 
and that neither path passes through the transition state. 
In the intermediate range of rBC, there are two values 
of rAli which will minimize the energy. If, in pro­
ceeding from reactants region, the lowest minimum 
energy value of rAB is chosen, then at the point marked 
"X," rAB will "jump" discontinuously to the point 
marked "Y." In many dimensions, however, it is 
likely that only a local minimum that is nearest to the 
previous minimum found will be obtained. If this is 
the case, then the "jump" in rAB will occur at the end 
of the path leading from the reactants region. As seen 
in Figure 2, a has passed through a maximum at the 
end of each path so that the minimization of cr should 
lead to the transition state. This, of course, will de­
pend to a certain extent on the features of the particular 
minimization method used. 

Although we have not yet encountered any diffi­
culties, the procedure described above of "forcing" 
the reaction into the transition state region may very 
well fail in some cases. Also, the trial and error nature 
of selecting the "independent variable" in complicated 
reactions can lead to the consumption of large amounts 
of computer time. We are thus investigating alterna­
tive methods in an attempt to deal with this potentially 
serious problem. 

Each point located by the procedure of first finding 
(or guessing) a point in the vicinity of a transition state 
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and then minimizing <r may satisfy only the first of 
the above conditions. It must be further tested to see 
that conditions 2 and 3 are also satisfied. This re­
quires the eigenvalues and eigenvectors of the force 
constant matrix. The details of the method we use 
to estimate the force constants and also the harmonic 
vibrational frequencies, intensities, and normal modes 
will be given a future publication.7 The main features 
of the method, which essentially involves a differ­
encing of the gradient, are given in Appendix B. 

Limitations of the Method 

The above-described method of locating transition 
states is in principle applicable to any reaction for which 
the transition state is well defined by conditions 1-3 
of the previous section. For example, the method 
would fail to locate a transition state that is at a cusp 
in the potential surface. As the cusp is traversed, the 
gradient will discontinously change so that there will 
not be a well-defined valley surrounding the transition 
state on the a surface. Cusps of finite energy actually 
arise from the intersection of two (or more) potential 
surfaces. The wave function will thus be degenerate 
at the cusp. Cases in which this degeneracy is due to 
symmetry can be predicted by the Jahn-Teller theorem.8 

Examples of this would be the degenerate states of the 
square-planar and tetrahedral configurations of atoms 
which have been suggested as possible transition states 

H2 + D2 —> 2HD (3) 

for reaction 3.9 The intersection of potential surfaces is 
also known to exist in certain nonsymmetrical cases.10 

Since the definition of the potential energy function 
arises from the Born-Oppenheimer approximation, 
the breakdown of this approximation in the vicinity 
of surface intersections would seem to require a re­
examination of the concept of a transition state for 
reactions involving a surface crossing. 

In some cases, an apparent intersection of potential 
surfaces may appear as an artifact of the method used 
to calculate the potential energy. Reactions which are 
predicted to be thermally forbidden by the Woodward-
Hoffmann rules necessarily involve a crossing of high­
est occupied and lowest vacant molecular orbital en­
ergy levels.6 This in turn implies a crossing of poten­
tial surfaces calculated with a closed-shell single-deter­
minant wave function. The resulting cusp could lead 
to the computational difficulties mentioned in the pre­
vious paragraph. Pople has recently shown that such 
cusps are the result of the limited flexibility of the wave 
function and that they do not appear either if configur­
ation interaction is introduced or if the orbitals in the 
single-determinant wave function are allowed to be­
come complex.11 Thus the apparent limitation pre­
sented by surfaces involving this orbital crossing ex­
ists only for single-determinant wave functions in 
which the orbitals are restricted to be real. 

(7) J. W. Mclver, Jr., and G. Guzzardo, to be published. 
(8) H. A. Jahn and E. Teller, Proc. Rov. Soc, Ser. A, 161, 220 

(1937). 
(9) H. Conroy and G. Malli, / . Chem. Phys., 50, 5049 (1969); M. 

Rubinstein and I. Shavitt, ibid,, 51, 2014 (1969); C. W. Wilson, Jr., 
and W. A. Goddard III, ibid., 51, 716 (1969). 

(10) G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday Soc, 
No. 35, 77 (1963); R. K. Preston and J. C. Tully, / . Chem. Phys., 54, 
4297 (1971), and references contained therein. 

(11) J. A. Pople, Int. J. Quantum Chem., in press. We thank Profes­
sor Pople for a preprint. 

The computational expense of obtaining the poten­
tial energy function and its gradient is potentially the 
most severe limitation of the method. The magnitude 
of this cost will largely depend upon the particular 
quantum mechanical method used to calculate the 
potential energy function. In general, the more re­
liable the method used, the more expensive the calcu­
lation will be. For the study of transition states, it is 
particularly important to consider the additional ex­
pense required to calculate the gradient of the poten­
tial energy function. The calculations reported in this 
article were made using a semiempirical molecular 
orbital method primarily for the reasons that such 
methods can be applied to fairly large molecules and 
that the additional expense of calculating the gradient 
is negligible.l Since it is clearly desirable to eventually 
apply the more sophisticated and reliable ab initio 
methods to the study of transition states, it is important 
to consider the types of methods that would be most 
economical for this purpose. In this respect, methods 
for which the Hellmann-Feynmann theorem is satisfied, 
such as the floating spherical Gaussian method of 
Frost,12 deserve serious consideration, since here the 
gradient is simply obtained as the expectation value 
of a one-electron operator. 

Application to the Cyclobutene-Butadiene Reaction 
The method described above was applied to the ring 

opening of cyclobutene to butadiene. This reaction 
is a particularly simple example of an electrocyclic 
process and has been extensively studied both theoret­
ically13 and experimentally.14 In the present study, 
the MINDO/2 molecular orbital method3 was used to 
calculate the potential energy function and its gradient. 
We selected this particular semiempirical method be­
cause it is computationally economical and because it 
has been shown to simultaneously predict equilibrium 
geometries, heats of formation, and stretching force 
constants that are in reasonable agreement with ex­
periment for a wide range of molecules.3a,b The 
parameters used are those reported in ref 3b. 

As a first step in the study of this reaction, the equi­
librium geometries of the reactants and products 
were calculated. The energy-minimization method de­
scribed in ref 1 was used for this purpose. The cal­
culated results for cyclobutene, which was optimized in 
C2, symmetry, are given in Table I along with the ex­
perimental values obtained in a recent microwave 
study.15 The atom numbering convention is given in 
Figure 3, which is an ORTEP16 drawing of the calculated 
geometry. As seen in Table I, the MINDO/2 geometry 
is in reasonable agreement with experiment. The 
most serious discrepancies are the C-H bond lengths, 
which are predicted to be too long by about 0.1 A; 
the Cx-C4 bond length, which is too short by 0.05 A; 

(12) R. A. Rouse and A. A. Frost, J. Chem. Phys., 50, 1705 (1969), 
and references contained therein. 

(13) (a) R. B. Woodward and R. Hoffmann, / . Amer. Chem. Soc, 
87, 395 (1965); (b) G. Feler, Theor. CMm. Acta, 12, 412 (1968); (c) 
K. Hsu, R. J. Buenker, and S. D. Peyerimhoff, J. Amer. Chem. Soc, 
93,2117(1971). 

(14) (a) H. M. Frey, B. M. Pope, and R. F. Skinner, Trans. Faraday 
Soc, 63, 1166 (1967); (b) H. M. Frey, ibid., 58, 957 (1962); (c) W. 
Cooper and W. D. Walters, / . Amer. Chem. Soc, 80,4220 (1958). 

(15) B. Bak, J. J. Led, L. Nygaard, J. Rastrup-Andersen, and G. O. 
S0rensen, J. MoI. Struct., 3, 369 (1969). 

(16) C. K. Johnson, "ORTEP: A Fortran Thermal-Ellipsoid Plot 
Program for Crystal Structure Illustrations," ORNL 3794, Oak Ridge 
National Laboratories, Oak Ridge, Tenn., 1965. 
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Figure 3. An ORTEP plot of the calculated structure of cyclobutene. 

and the Hi-Ci-H1 ' angle, which is about 7° too 
small. Dewar, et al.?3- have found that the MIN­
DO/2 method is consistent in predicting C-H bond 
lengths to be too long by about 0.1 A. We have found, 

Table I. Experimental and Calculated Geometrical Parameters 
of Cyclobutene 

Bond, A» 

C1-C2 

C2-C3 

C1-C, 
C2-H2 

C1-H1 

ExptP 

1.517 
1.342 
1.566 
1.083 
1.094 

Calcd 

1.48 
1.33 
1.51 
1.19 
1.21 

Angle, deg 

C2-C3-C4 

C3-C4-C1 

H2-C2-C3 

H1-C1-H1 

H4-C4-C1 

a* 

Exptl6 

94.2 
85.8 

133.5 
109.2 
114.5 
135.8 

Calcd 

93.6 
86.4 

135.6 
102.1 
117.6 
132.6 

" Atom numbering refers to Figure 3. b Reference 14. c Angle 
of the C1-C4 bond with H1-C1-H1' plane. 

from the study of a number of hydrocarbons, that 
MINDO/2 also consistently predicts C-C single bonds 
to be too short by a few hundreths of an angstrom 
and H-C-H bond angles to be too small by several 
degrees.17 

The calculated geometry of cw-butadiene (opti­
mized in C2„ symmetry) is given in Table II. Since the 

Table II. Experimental and Calculated Geometrical Parameters 
of cis-, trans-, and gauc/fe-Butadiene 

C1-C2 

C2-C3 

C-H(av) 

C1-C2-C3 

H2-C2-C1 

H1-C1-H1 ' 

C1-C2-C3-C4 

Hi—C1-C2—H 2 
HZ-C1-C2-H2 

ExptP Calcd 
trans cis 

Bond, A" 
1.343 1.32 
1.467 1.46 
1.094 1.20 

Angles, deg 
122.8 127.1 
119.5 118.6 
121.0 110.8 

Dihedral Angles, deg 
180.0 0.0 

0.0 0.0 
180.0 180.0 

Calcd 
trans 

1.32 
1.45 
1.20 

129.6 
119.8 
110.6 

180.0 
0.0 

180.0 

Calcd 
gauche 

1.32 
1.45 
1.20 

126.1 
120.2 
110.7 

86.9 
0.7 

179.0 

" Atom numbering refers to Figure 4. b Reference 17. 

cis isomer has not been experimentally isolated,18 we 
have also calculated the geometry of /ra/w-butadiene 
(in C2h symmetry) in order that a meaningful comparison 

(17) A. Komornicki, unpublished results. 
(18) W. Haugen and M. Traetteberg, Acta Chem. Scand., 20, 1726 

(1966), and references contained therein. 

Figure 4. An ORTEP plot of the calculated structure of butadiene. 

with experiment could be made. As seen in Table II, 
the calculated geometries of the cis and trans isomers 
differ insignificantly, and the calculated geometry of 
rrarcs-butadiene is in reasonable qualitative agreement 
with experiment. The discrepancies are of the same 
type noted in the previous paragraph. It might be 
pointed out that the difference in stability between the 
two isomers appears to be well accounted for by the 
MINDO/2 method. On the basis of heat capacity 
and other thermodynamic data, Aston has concluded 
that /rans-butadiene is more stable than cw-butadiene 
by 2.4 kcal.19 The MINDO/2 calculated value is 
2.2 kcal. 

We believe that the calculated butadiene results of 
the previous paragraph should be viewed with a cer­
tain amount of caution, however, since according to 
MINDO/2, both the cis and trans isomers are unstable 
relative to the structure shown in Figure 4. This 
geometry has C2 symmetry, approximately perpendicu­
lar vinyl groups, and an energy 1.9 kcal below that 
calculated for the trans structure, but otherwise agrees 
with both the cis and trans isomers, as can be seen 
from Table II. Butadiene is almost certainly most 
stable in the trans configuration, even in the gas phase.18 

It is interesting to note, however, that hexafluorobuta-
diene is very likely nonplanar.20 It would thus appear 
in this case that MINDO/2, as currently parametrized, 
either overestimates nonbonded repulsion energies, 
underestimates 7r-electron derealization energies, or 
both. 

Once the optimum geometries of the reactant and 
product were determined, the Ci-C4 bond of cyclo­
butene was stretched in 0.05-A increments and the en­
ergy was minimized with respect to all of the remaining 
degrees of freedom at each incremental value of the 
Ci-C4 bond. (It was also necessary to initially de­
stroy the Cit symmetry by moving the methylene hy­
drogens because the minimization method would 
otherwise retain this symmetry.*) Until a Ci-C4 bond 
length of about 2.2 A was reached, the structures ob­
tained by the minimization resembled that of cyclo­
butene with the methylene hydrogens slightly twisted 
in a conrotatory manner. Further stretching of the 
Ci-C4 bond resulted in a structure closely resembling 
that of butadiene. This apparent discontinuity is 
accounted for by the discussion in an earlier section. 

(19) J. G. Aston, Discuss. Faraday Soc, No. 10, 73 (1951). 
(20) C. R. Brundle and M. B. Robin, /. Amer. Chem. Soc, 92, 5550 

(1970). 
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Table III. Calculated Geometrical Parameters of the Transition State0 

Bond, 

C1-C2 

C2-C3 

C3-C4 
C1-C4 
H1-C1 

H2-C2 

H3-C3 
H 4 -C 4 

A 

1.36 
1.40 
1.36 
2.07 
1.20 
1.20 
1.20 
1.20 

Angle, deg 

C1-C2-Ca 
C2-C 3—C 4 
C3—C4-Ci 
H2-C2

-C1 

H2-C2-C3 

Hi-C1-H1 

H 4—C 4—Ci 
H<'-C4-C1 

H4—C4—C3 

H4 — C4—O3 

102.3 
102.3 
74.4 

127.2 
128.8 
106.5 
84.6 

135.4 
127.4 
122.4 

Dihedral angle, deg 

Ci-C2-C8-C4 26.3 
H j - C - C 3 - H 8 54.3 
H2-Cj-Ci-Hi 14.7 
H2-Cj-Ci-H1 ' 140.6 

Angle with a plane,6 deg 

(H4-C4-H4O-Ci 133.8 
(C3-C2-G)-H2 100.9 
(H4-C4-H4O-C3 107.0 

Atom numbering refers to Figure 5. b (A-B-C)-D refers to the angle between bond B-D and the plane defined by atoms A, B, and C. 

The sum of squares of the components of the gradient, 
a, was monitored throughout this process. It was 
initially zero at the reactants, and it passed through a 
maximum at a C1-Ci distance of about 2 A. This 
indicated that the least-squares minimization would 
lead to a transition state provided that the initial geom-

Figure 5. An ORTEP plot of the calculated structure of the transition 
state. 

etry used was chosen to be one of the structures ob­
tained between 2 and 2.2 A of the C1-C1 bond length. 
An optimum geometry obtained with this bond length 
slightly less than 2.2 A used as the initial geometry, 
and the least-squares minimization was carried out 
until ex was less than 10~s atomic unit. This ensured 
that the magnitude of the largest component of the 
gradient was less than 10 -4 au (hartree bohr - 1) 
which, in this case, indicated that the Cartesian co­
ordinates of the transition state were determined within 
0.01 A.1 

The small magnitude of the gradient for the struc­
ture obtained by the minimization of a indicates that 
condition 1 stated earlier was satisfied. In order that 
this structure could be properly identified as a transition 
state satisfying conditions 2 and 3, the force constant 
matrix A was evaluated using the method described 
in Appendix B. One point on each side of the transi­
tion state for each Cartesian^ coordinate was chosen 
using an increment of 0.012 A. This increment was 
selected on the basis of an extensive error analysis per­
formed on the calculated force constants in smaller 
hydrocarbons.7 This procedure resulted in the largest 
magnitude element of asymmetry of the force constant 
matrix and the magnitudes of the pure rotational and 
translational eigenvalues being less than 0.0001 au 
(hartree bohr -2). On the basis of symmetry, the error 
in the normalized eigenvectors was less than 0.01. 
Thus, for the present purposes, we judged the error in 

the numerical calculation of the force constants to be 
acceptable. The resulting distribution of eigenvalues 
of the force constant matrix included a single negative 
eigenvalue of —0.0876 au, six zero eigenvalues cor­
responding to pure translations and rotations, and 23 
positive eigenvalues ranging from 0.0070 to 1.2659 au. 

The geometrical parameters of the calculated transi­
tion state are given in Table HI. The structure has 
C2 symmetry. Figure 5 shows an ORTEP view of this 
structure along the C2 axis. The arrows indicate the 
relative displacements of each atom along the direc­
tion of most negative curvature leading toward buta­
diene. As seen in the figure, this direction is totally 
symmetric. Starting with the geometry of the transi­
tion state and an initial step along this direction, the 
minimization of the energy led to the butadiene struc­
ture of Figure 4. (This is how we actually discovered 
this butadiene structure.) 

The nonplanarity of the carbon skeleton of the transi­
tion state is not surprising in view of the calculated 
butadiene structure. We speculate, however, that the 
true transition state might actually be more appropri­
ate for the cyclobutene-/ra«5-butadiene (rather than 
m-butadiene) reaction. This, of course, can only be 
tested by calculations with a method more reliable than 
MINDO/2. The methylene groups are oriented in a 
conrotatory manner in accordance with the Wood­
ward-Hoffmann rules.13a From Figure 4, however, 
it would appear that they are oriented in this sense in 
the calculated product as well. Although quantita­
tive measures are somewhat arbitrary, it seems that the 
structure of the calculated transition state more closely 
resembles butadiene than cyclobutene. Thus, the 
relatively small Hi-Ci-C2-H2 dihedral angle of 14° 
and the Ci-C2 bond length of 1.36 A indicate that this 
fragment and its symmetry equivalent closely resemble 
the vinyl units in butadiene. Other geometrical param­
eters, such as the C2-C3 bond length and the H-C-H 
bond angles, are intermediate between their values for 
reactant and product. The C-H bond lengths are 
calculated to be the same in all three species. 

The energetics of this reaction are poorly accounted 
for by the MINDO/2 calculations. The forward re­
action (cyclobutene -»• butadiene) is known to be exo­
thermic by 8.8-8.9 kcal,21 whereas MINDO/2 pre­
dicts the reaction to be endothermic by 20.5 kcal. The 
experimentally determined activation energy from the 

(21) This estimate is based on the recent determination of the heat 
of formation of cyclobutene by Wiberg [K. B. Wiberg and R. A. Feno-
glio, J. Amer, Chem. Soc, 90, 3395 (1968)], and the heat of formation of 
cis-butadiene corrected by the difference in stability between the cis and 
trans isomers. 

Journal of the American Chemical Society / 94:8 / April 19, 1972 



2631 

pyrolysis of cyclobutene is 32.2 kcal.14a The calcu­
lated value of the barrier height is 49.5 kcal. There 
are a number of possible reasons for these discrepancies. 
In the first place, the MINDO/2 method, as currently 
parametrized, is known to consistently underestimate 
the energy of strained cyclic hydrocarbons.313 This 
would account for the discrepancy in the heat of re­
action. The tendency to underestimate strain energy 
should also manifest itself for the calculated transition 
state, so that MINDO/2 would be expected to under­
estimate the barrier height for the reverse reaction, 
which it does. It is interesting to note that other zero-
differential-overlap methods also tend to favor forma­
tion of ring systems in preference to their acyclic ana­
logs.22 A second possible source of error lies in the 
fact that the MINDO/2 method, although highly semi-
empirical, is cast in the framework of single-deter-
minent molecular orbital theory for closed shells. Al­
though correlation effects can be expected to cancel 
in the enthalpies of certain reactions,23 it seems likely 
that they could be important in transition states which 
involve partially broken bonds. In their extensive 
ab initio study of the cyclobutene-w-butadiene reac­
tion, Hsu, Buenker, and PeyerimhofF3c found that 
correlation effects were indeed important in the region 
of the partially broken Ci-C4 bond. A third possible 
source of error arises from the fact that the activation 
energy and the potential barrier height are not the 
same quantity.24 This, however, is undoubtedly un­
important in the present case compared to the above 
two sources of error. In view of the large discrepancy 
between the calculated and observed energies, we would 
also consider zero-point vibrational corrections to be 
unimportant here. Finally, we must recognize the 
possibility that the lowest energy transition state for 
this reaction was not found, i.e., that condition 4 was 
not satisfied. However, we find it difficult to conceive 
of a type of structure for a transition state that is rad­
ically different from the one found and which would 
still obey the Woodward-Hoffmann rules. 

Finally, it is interesting, although perhaps not sig­
nificant, that the calculated results are in accord with 
the Hammond postulate.25 This postulate essentially 
states that the structure of the transition state will re­
semble the product more closely than the reactant for 
endothermic processes and that the converse is true for 
exothermic reactions. Of course, if this postulate is 
generally correct, then some doubt would be cast on 
the MINDO/2 results for the structure of the transition 
state since the reaction is, in reality, exothermic. 

Conclusions 

The method described in this article is both conceptu­
ally simple and quite generally applicable to the study 
of transition states. Its only unique feature is that at­
tention is focused on the gradient of the potential 
energy rather than the potential energy function itself. 
The economic feasibility of using such a method will 
depend on such factors as the computing resources 
available, the size of the system studied, and the method 

(22) A. Streitwieser, Jr., P. C. Mowery, R, G. Jesaitis, and A. Lewis, 
J. Amer. Chem. Soc, 92, 6529 (1970). 

(23) W. A. Lathan, W. J. Hehre, and J. A. Pople, ibid., 93, 808 
(1971), and references contained therein. 

(24) M. Menzinger and R. Wolfgang, Angew. Chem., Int. Ed. Engl, 
8,438(1969). 

(25) G. S. Hammond, J. Amer. Chem. Soc, 77, 334 (1955). 

used to calculate the potential energy function and its 
gradient. In this latter respect, the use of semiempir-
ical methods appears to be most promising. For ex­
ample, the entire calculation reported in this article 
required only 86 min of CDC 6400 central processor 
time.26 Dewar, et ah, have argued that a method must 
reliably predict geometries, force constants, and heats 
of formation in order that structures of transition states 
can also be reliably predicted.3a This in itself, however, 
is not a sufficient criterion for assessing the accuracy 
of such calculations by semiempirical methods. Since 
it is unlikely that the geometries of transition states will 
ever be determined experimentally, it is important that 
extensive ab initio calculations be performed on such 
species in order that the reliability of the semiempirical 
methods can be properly evaluated. 

Although semiempirical methods such as MINDO/2 
will undoubtedly provide useful information concern­
ing some of the details of chemical tranformations, we 
do not believe that at present they are of sufficient 
reliability for kinetic studies. It is hoped, however, 
that the fact that equilibrium geometries, transition 
states, and force constants can easily be calculated with 
such methods would serve as a stimulus for their fur­
ther development. 
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Appendix A. Least-Squares Minimization 

We assume that point q° in the vacinity of the transi­
tion state is known. Expanding a(q) in a Taylor se­
ries about q° gives 

<Kq) = <r(q°) + (q - q°)+-V°+ 
1A(Q - q°)+B°(q - q°) + higher order terms (Al) 

where V0 is a column vector whose elements are given as 

Vf = 

or, in vector notation 

Vo = (V<r)q = qo (A2) 

where V is the gradient operator (a column vector). 
The elements of the matrix B are given as 

» o _ SMq) 

or (A3) 

B» = (VVV), 

(26) The breakdown is: geometry of ci'j-butadiene, 6 min; trans-
butadiene, 3 min; cyclobutene, 3 min; search for vicinity of transi­
tion state, 23 min; minimization of IT, 18 min; calculation of force con­
stants of transition state, 20 min; and minimization of transition state 
to butadiene, 13 min. 
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The minimum point qmin must be a stationary point, 
so that 

V<7 = 0 = V° + B°(qmin - q°) + 

higher order terms (A4) 

from eq Al. If a is a pure quadratic function of q, 
that is, if the higher order terms of eq Al and A4 are 
zero, then the minimum point qmin is obtained from 
eq A4 as 

qmin = qo _ (BO)-IyO (A5) 

provided that B0 is positive definite. Otherwise, qmin 

will be a saddle point or maximum. If a is not a pure 
quadratic, then qmin will only be an approximation 
to the minumum. Equation A5 can then be solved 
iteratively by replacing q° by qmin, evaluating the de­
rivatives in eq A2 and A3 at the new q° and then sub­
stituting into eq A5 and solving for qmin again. This 
process can be repeated until (B0)-1V0 = 0 within a 
specified accuracy. This method is known as the gen­
eralized Newton-Raphson method. It converges very 
rapidly in the vicinity of the minimum, but suffers 
from the disadvantage that both the first and second 
derivatives of a are required. 

For the location of transition states on the potential 
energy surface, <r(q) is given by eq 3 as the sum of the 
squares of the components of the gradient of the poten­
tial energy 

a = gfg (A6) 

so that 

V° = Va = 2A+g (A7) 

and 

B° = w V = 2(A+A + C) (A8) 

where A is the force constant matrix defined in eq 2. 
Elements of the matrix C are given as 

which involves the third derivatives of the potential 
energy. However, at the transition state C = O since 
g = 0, and for points near the transition state C will 
be expected to be small compared to A+A. Equation 
A8 can then be approximately written as 

B0 « 2A1A (AlO) 

Equation AlO is the central approximation of the gen­
eralized least-squares method. Its significance lies 
in the fact that the derivatives of A are no longer needed. 
Also B0 is guaranteed to be at least positive semidefi-
nite, so that when it is used in the Newton-Raphson 
iterative scheme (eq A5) the method will always con­
verge to a minimum point of a. 

The method, as it stands, requires evaluating the 
force constant matrix A at each point generated by 
eq A5. Powell, however, has devised a modification 
of the least-squares method which largely avoids the 
expense of calculating A.27 In Powell's procedure, 
a general set of linearly independent directions is used 

(27) M. J. D. Powell, Comput. J., 7, 303 (1965). 
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which are chosen initially to be the coordinates q{ 

themselves. The derivatives of g along these direc­
tions become the columns of A and are initially esti­
mated by differences. By solving an equation similar 
to eq A5, a new direction is obtained which is used to 
replace one of the original directions. A new start­
ing point is then determined by searching for a min­
imum' along this new direction. This ensures conver­
gence of the method and also provides an estimate of 
the derivative of each component of g along the new 
direction. These derivatives replace the appropriate 
column of A and the new B0 matrix is constructed using 
eq AlO. The process is repeated until g = 0 within 
a specified tolerance. 

Since the inverse of B0 is required in eq A5, the 
method cannot tolerate linear dependencies of qt. If 
the 37V Cartesian coordinates are used, there will be 
six linearly dependent directions, three corresponding 
to pure translation and three corresponding to pure 
rotation of the system as a whole. These can be elim­
inated by using six of the qt's to define a molecule-
fixed coordinate system, leaving 3/V — 6 linearly inde­
pendent degrees of freedom for the minimization of a. 
For example, the coordinate system can be chosen such 
that the first atom (atom number 1) lies on the origin, 
atom number 2 lies on the z axis, and atom number 3 
(not collinear with atoms 1 or 2) lies in the xz plane. 
Thus xi = y>i = Zi = X2 = y2 = yz = 0 in this case, 
and these six coordinates can be eliminated from the 
list of the 3/V qt'% in the minimization of a. The com­
ponents of the gradient corresponding to these six 
coordinates can also be eliminated, since, if there are no 
external forces on the system, they must be zero when 
the remaining 3/V — 6 components of the gradient are 
zero. However, our experience with Powell's method 
indicates that the convergence is dramatically improved 
when all of the components of the gradient are used. 
(This, of course, means that A will have 3/V rows and 
3/V — 6 columns; but B0 will remain square.) We 
have also found that the method will occasionally 
generate a matrix B0 which is singular and thus cannot 
be formally inverted. This "accidental" singularity 
is taken into account by performing the inversion of 
B0 in three steps: first by diagonalizing B0, inverting 
the eigenvalues, and then back-transforming these in­
verted eigenvalues with the eigenvectors of B0 to give 
B0 - 1 . If one of the eigenvalues is zero (or very small), 
then the one-dimensional search of the Powell procedure 
is taken along the direction of the eigenvector of B0 

corresponding to this zero eigenvalue. 

Since equilibrium geometries can also be determined 
by minimizing a, the least-squares method of Powell 
can be compared to geometry-optimization methods. 
We have found that this method is comparable in 
efficiency to the variable metric method we use to cal­
culate equilibrium geometries,1 the additional expense 
of the least-squares method being largely due to the 
initial estimate of the force constant matrix required. 

Appendix B. Calculation of Force Constants 

Since the force constants are just the second partial 
derivatives of the energy taken with respect to each 
nuclear displacement, they may be evaluated using 
perturbation theory. We have found it both conven­
ient and computationally efficient to evaluate them 
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numerically using the finite perturbation method,28 

which we review below. 
It is clear from eq 2 that an element of the force 

constant matrix AT at the transition state can be written 
as 

SgJK(j) = S g ^ 2K-2 

A T = 
p2£(q)~| 
-.bqdqi. q = qT . ^Qj Jq = qT 

pg/q) 
L £>9i 

(Bl) 

Since in the methods we use, the entire vector g is ob­
tained with the potential energy, it is convenient to 
consider one column of AT at a time 

A,T = (dg/dfc),-^ (B2) 

where A,T denotes the y'th column of AT. 
In the finite perturbation method, the derivatives in 

eq B2 are evaluated numerically using finite differ­
ences. First g is evaluated at several points symmetri­
cally spaced about gT and separated by a fixed incre­
ment A in q. 

Hm(j) = g($iT, ?2T, . . •, 9,T + mh, . 
m = —n, . . ., - 2 , - 1 , 0, 1, 2, . . 

tf*,7) (B3) 

where n > 0. The increment A is taken to be the same 
for all j . The derivative eq B2 is then approximated 
by using the differentiated Newton-Stirling formula29 

AA/ = juSgoO') + + 3! 

(-l)»-\n - 1) 12 

n n , MSgo2**-1CO (B4) (2n — 1)! 

where the mean differences ju5go2K_1 are defined as 

M5go2X+1CO = 1MSgI2^O-) - fig-it/)8*) (B5) 

The differences 5gm
2K(J) a r e calculated from the re­

cursion formula 

(28) J. A. Pople, J. W. Mclver, Jr., and N. S. Ostlund, J. Chem. Phys., 
49,2960(1968). 

(29) H. Jeffreys and B. S. Jeffreys, "Methods of Mathematical 
Physics," Cambridge University Press, Cambridge, England, 1946, 
p 277. 

25gm
2K-20) + 

Sgm 
2 X - 2 , (J) (B6) 

where 5gm°0") is given by eq B3. 
The error in using eq B4 to estimate the derivatives 

will depend on the number of points n on either side 
of qs

T taken, the magnitude of A, and the accuracy to 
which g is calculated. For a given value of n, it has 
been shown that the magnitude of A can be chosen to 
minimize the error and also provide an estimate of its 
magnitude.28 In the case of force constant calcula­
tions, there are two additional means of estimating the 
error which we have found to be quite reliable. The 
first is the degre of asymmetry of the force constant 
matrix. Since this matrix is calculated column by 
column, Atj

T will only be approximately equal to A1?. 
Thus the largest element of the matrix \Atj

T — A}?\ 
is a rough estimate of the error. Secondly, if the 37V 
Cartesian coordinates are used, AT will have six eigen­
values which are zero. The number of decimal places 
to which these eigenvalues are zero provides another 
estimate of the error. The corresponding eigenvectors 
can also be examined to see how accurately they cor­
respond to pure translation and rotation and, if there 
is any symmetry in the system, the remaining eigen­
vectors can be examined to see how accurately they 
transform according to the appropriate irreducible 
representations. 

An important factor which should not be overlooked 
is the computational expense involved. It is clearly 
desirable to minimize this expense as much as possible 
and still maintain a reasonable accuracy in the force 
constants. In principle, since g(qT) = 0, g will be an 
odd function of q, in the harmonic region of the poten­
tial surface near the transition state. Thus, from eq B3 

Sg-0O) = -Sg-m°0) (B7) 

so that only the points for positive (or negative) m need 
be calculated. This should halve the computational 
expense of estimating the force constants. In practive 
we have found that in order that the transition state 
be located precisely enough to apply eq B7 it is neces­
sary to spend more additional computer time in mini­
mizing a than what is saved by using eq B7, if suffi­
cient accuracy in the force constants is to be obtained. 
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